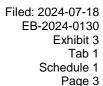

EPCOR Natural Gas Limited Partnership

Cost of Service Application EB-2024-0130 July 18, 2024

Exhibit 3 – Operating Revenue

PROVIDING MORE



Contents

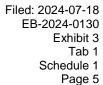
3.0	Operating Revenues	3
3.1	Throughput and Revenue Forecast	4
3.2	Accuracy of Throughput Forecast and Variance Analyses	6
3.3	Transactional Services / Storage and Transportation Revenue	13
3.4	Other Revenue	14
	Appendix A – Power Advisory Report	17

3.0 Operating Revenues

1 2

- 3 ENGLP's operating revenue is divided into three components gas distribution and transportation
- 4 revenue, and other operating revenue.
- 5 Gas distribution and transportation revenues do not include the gas supply charge related to the
- 6 system gas supply fee, PGCVA reference price, the GPRA recovery or the gas commodity
- 7 recovery charge. Further, in this Application, transportation revenues and costs have been
- 8 removed from the distribution revenue requirement and are instead categorized as a stand-alone
- 9 cost/recovery basis. Additional detail can be found further in section 3.3 of this Exhibit.
- 10 ENGLP revenues are currently collected from six rate classes:
- Rate 1 General Service Rate;
- Rate 2 Seasonal Service:
- Rate 3 Special Large Volume Contract Rate;
- Rate 4 General Service Peaking;
- Rate 5 Interruptible Peaking Contract Rate; and,
- Rate 6 Integrated Grain Processor Co-Operative Aylmer Ethanol Production Facility
- 17 ("**IGPC**").
- As explained further in Exhibit 8, ENGLP is proposing in this application to segregate the Rate 1
- 19 Class into two distinct rate structures:
- Rate 1 Residential
- Rate 1 General Service (Combined Commercial & Industrial)
- 22 For the purpose of this Exhibit, the Commercial and Industrial categories are presented separately
- in order to compare to the previous filing.

3.1 Throughput and Revenue Forecast


ENGLP engaged Power Advisory LLC ("**Power Advisory**") to complete the 2025 Test Year load forecast. Power Advisory provided forecasts by rate class for consumption and demand (if applicable), and the number of customers and connections. The sales and energy forecast utilized actual data from January 2012 to December 2023. An excel version of this load forecast has been

7 included with this application as attachment *ENGLP_EB-2024-0130_Load Forecast*.

ENGLP has also filed a Gas Supply Plan (EB-2024-0139), which has been used as the basis for preparation of the volume and customer count forecast used in this Application. A copy of the detailed report completed by Power Advisory is included as *Appendix A* in this Exhibit. All economic assumptions and data sources used in the preparation of the volume and customer count forecast, including expansions and the impact of any demand side management, cap and trade or other greenhouse gas ("**GHG**") reduction-related activities are included in the report. Note this version has been updated in comparison to the version filed in the Gas Supply Plan to include the expected expansion of the large agricultural customer as described in Exhibit 2.

The methodology outlined in this report is consistent with the methodology used in ENGLP's last four load forecast updates and is largely consistent with the methodology used in ENGLP's 2020 Cost of Service application (EB-2018-0336) and the methodology used by Natural Gas Resources Limited ("NRG") in previous rates applications. Parties agreed to the results of the 2020 throughput forecast in settlement and the overall methodology was last approved by the OEB in EB-2010-0018. Alternate methods were tested but were generally found to be inferior to the previously approved methodology.

The regression equations used to normalize and forecast ENGLP's weather sensitive load use monthly heating degree days as measured at Environment Canada's London CS weather station to take into account temperature sensitivity. This location is the closest weather station to ENGLP's service territory with strong historical weather data. ENGLP experiences peak loads in winter months, though certain rate classes are not weather sensitive. Environment Canada defines heating degree days as the difference between the average daily temperature and 18°C

- 1 for each day. Heating degree days is 0 when the average temperature is above 18°C. Heating
- 2 degree day data with alternate temperature thresholds other than 18°C were considered,
- 3 consistent with the OEB's electricity distributor load forecast filing requirements.

Table 3.1-1
Summary - Distribution Revenue (\$)

	2023	2024	2025
Rate Class	Actual	Bridge	Test
Rate 1 - Residential	\$4,169,322	\$4,679,120	\$5,124,352
Rate 1 - Commercial	\$782,634	\$879,222	\$866,356
Rate 1 - Industrial	\$175,645	\$199,477	\$311,017
Rate 2	\$114,058	\$96,256	\$102,790
Rate 3	\$91,601	\$246,983	\$292,022
Rate 4	\$250,950	\$265,764	\$294,535
Rate 5	\$52,859	\$50,704	\$54,610
Rate 6	\$795,064	\$830,046	\$893,989
Total Revenue	\$6,432,131	\$7,247,572	\$7,939,671

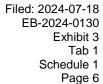
*Revenues have been reduced by the equivalent of the approved PGTVA reference \$0.023724 per m³ for consistent presentation as the Transportation revenue is being proposed to be removed from the revenue requirement in 2025.

Table 3.1-2 Summary – Load Forecast (m³)

	2023	2024	2025
Rate Class	Actual	Bridge	Test
Rate 1 - Residential	17,466,767	19,394,143	19,778,416
Rate 1 - Commercial	5,823,050	6,119,454	6,193,869
Rate 1 - Industrial	3,013,707	2,579,897	2,686,373
Rate 2	869,131	832,281	832,281
Rate 3	1,335,618	2,740,988	3,918,036
Rate 4	2,227,329	2,023,938	2,334,616
Rate 5	980,160	647,586	647,586
Rate 6	65,345,852	65,345,852	65,345,852
Total Usage	97,061,614	99,684,139	101,737,029

Table 3.1-2 Summary – Mid-Year Customer Count

	2023	2024	2025
Rate Class	Actual	Bridge	Test
Rate 1 - Residential	9,318	9,448	9,578
Rate 1 - Commercial	580	585	590
Rate 1 - Industrial	79	80	81
Rate 2	51	50	50
Rate 3	4	5	5
Rate 4	43	45	46
Rate 5	4	4	4
Rate 6	1	1	1
Total Customer Count	10,080	10,218	10,355


¹ Government of Canada, Environment and Natural Resources, online at: https://climate.weather.gc.ca/glossary_e.html

6 7 8

9

4

5

1 2

5 6

7

8

9

3.2 Accuracy of Throughput Forecast and Variance Analyses

Tables 3.2-1 to 3.2-9 below, provide the schedule of throughput volumes, revenues, and customer count by rate class.

Throughput Volumes

Table 3.2-1 Summary – Throughput Volumes (m³)

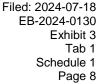
	2020T	2020	2021	2022	2023	2024	2025
Rate Class	Approved	Actual	Actual	Actual	Actual	Bridge	Test
Rate 1 - Residential	17,043,677	16,837,081	17,299,257	18,760,439	17,466,767	19,394,143	19,778,416
Rate 1 - Commercial	4,851,704	5,028,438	5,306,940	6,163,726	5,823,050	6,119,454	6,193,869
Rate 1 - Industrial	1,743,215	2,067,358	2,226,121	2,377,452	3,013,707	2,579,897	2,686,373
Rate 2	1,280,413	784,724	829,096	839,041	869,131	832,281	832,281
Rate 3	1,721,684	1,361,184	1,372,372	1,551,993	1,335,618	2,740,988	3,918,036
Rate 4	1,149,006	1,534,283	1,793,580	1,601,474	2,227,329	2,023,938	2,334,616
Rate 5	685,748	554,438	791,530	585,954	980,160	647,586	647,586
Rate 6	59,243,876	59,599,950	60,410,748	62,040,423	65,345,852	65,345,852	65,345,852
Total Usage	87,719,322	87,767,455	90,029,645	93,920,502	97,061,614	99,684,139	101,737,029
YOY Variance		0.05%	2.58%	4.32%	3.34%	2.70%	2.06%

Table 3.2-2 Summary – Throughput Volumes (m³) – Weather Normalized

	2020T	2020	2021	2022	2023	2024	2025
Rate Class	Approved	Actual	Actual	Actual	Actual	Bridge	Test
Rate 1 - Residential	17,043,677	17,620,844	18,272,944	18,633,571	18,312,844	19,394,143	19,778,416
Rate 1 - Commercial	4,851,704	5,344,470	5,648,018	6,979,306	4,642,450	6,119,454	6,193,869
Rate 1 - Industrial	1,743,215	2,241,827	2,736,619	2,399,540	1,538,982	2,579,897	2,686,373
Rate 2	1,280,413	785,475	829,096	838,908	838,908	832,281	832,281
Rate 3	1,721,684	1,390,907	1,414,518	1,554,954	1,525,544	2,740,988	3,918,036
Rate 4	1,149,006	1,556,748	1,793,580	1,601,181	1,601,181	2,023,938	2,334,616
Rate 5	685,748	554,438	791,530	585,954	585,954	647,586	647,586
Rate 6	59,243,876	59,599,950	60,410,748	62,040,423	62,040,423	65,345,852	65,345,852
Total Usage	87,719,322	89,094,659	91,897,053	94,633,837	91,086,285	99,684,139	101,737,029
YOY Variance		1.57%	3.15%	2.98%	-3.75%	9.44%	2.06%

11

Table 3.2-3 Summary – Distribution Revenue (\$)


	2020T	2020	2021	2022	2023	2024	2025
Rate Class	Approved	Actual	Actual	Actual	Actual	Bridge	Test
Rate 1 - Residential	\$3,673,758	\$3,905,269	\$3,749,449	\$4,224,947	\$4,169,322	\$4,679,120	\$5,124,352
Rate 1 - Commercial	\$648,927	\$679,594	\$651,309	\$734,072	\$782,634	\$879,222	\$866,356
Rate 1 - Industrial	\$99,831	\$107,582	\$93,340	\$99,901	\$175,645	\$199,477	\$311,017
Rate 2	\$121,735	\$141,948	\$135,492	\$154,285	\$114,058	\$96,256	\$102,790
Rate 3	\$126,858	\$144,729	\$138,507	\$155,225	\$91,601	\$246,983	\$292,022
Rate 4	\$122,116	\$121,276	\$109,819	\$133,063	\$250,950	\$265,764	\$294,535
Rate 5	\$49,705	\$56,487	\$48,518	\$61,649	\$52,859	\$50,704	\$54,610
Rate 6	\$734,759	\$734,759	\$747,985	\$769,676	\$795,064	\$830,046	\$893,989
Total Revenue	\$5,577,690	\$5,891,643	\$5,674,418	\$6,332,817	\$6,432,131	\$7,247,572	\$7,939,671
YOY Variance		5.63%	-3.69%	11.60%	1.57%	12.68%	9.55%

*Revenues have been reduced by the equivalent of the approved PGTVA reference \$0.023724 per m³ for consistent presentation as the Transportation revenue is being proposed to be removed from the revenue requirement in 2025.

Comparison of Year-over-Year Normalized Actuals

Variances in Table 3.2-4 reflect differences between the 2020 Approved forecast and 2020 Actual and weather normalized volumes. The 2020 forecast was based on customer count and load data up to August 2018. The three Rate 1 rate classes and Rate 3 are weather-sensitive, meaning weather-normal volumes differ from actuals based on heating volumes. Weather-normalization is done on a monthly basis, so it does not necessarily impact each rate class in the same way. The Rate 1 – Residential and Rate 1 – Commercial classes are more sensitive to weather in the coldest months of the year, but Rate 1 – Industrial is more sensitive to weather in the late summer and early fall. Consequently, weather normalizing Rate 1 – Residential and Rate 1 – Commercial volumes in a mild winter year, for example, would lead to higher weather-normalized volumes than actual volumes, but weather normalizing Rate 1 – Industrial may decrease volumes if temperatures were lower than average in the late summer and early fall.

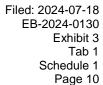
Year-over-year variances in volumes for the Rate 2, Rate 4, and Rate 5 rate classes are primarily caused by differences in annual crop yields and the changing composition of customers.

EPC@R

	Cu	stomers		Ac	tual Volumes		Weather Normal Volumes			
Rate Class	2020T Approved	2020 Actual	Diff.	2020T Approved	2020 Actual	Diff.	2020 Approved	2020 Normal	Diff.	
Rate 1 - Residential	8,877	8,805	-0.8%	17,045,597	16,837,081	-1.2%	17,045,597	17,634,113	3.5%	
Rate 1 - Commercial	494	535	8.3%	4,851,704	5,028,438	3.6%	4,851,704	5,348,179	10.2%	
Rate 1 - Industrial	68	75	10.0%	1,743,215	2,067,358	18.6%	1,743,215	2,213,080	27.0%	
Rate 2	50	48	-3.5%	1,280,413	784,724	-38.7%	1,280,413	784,724	-38.7%	
Rate 3	6	6	0.0%	1,721,684	1,361,184	-20.9%	1,721,684	1,384,060	-19.6%	
Rate 4	38	40	6.4%	1,149,006	1,534,283	33.5%	1,149,006	1,534,283	33.5%	
Rate 5	4	4	0.0%	685,748	554,438	-19.1%	685,748	554,438	-19.1%	
Rate 6	1	1	0.0%	59,243,876	59,599,950	0.6%	59,243,876	59,599,950	0.6%	
Total	9,538	9,514	-0.2%	87,721,243	87,767,455	0.1%	87,721,243	89,052,827	1.5%	

 The Rate 1 - Commercial and Rate 1 - Industrial rate classes had higher than typical customer count increases in 2019, so the actual 2020 counts are higher than forecast. Volumes for these classes are also higher than forecast due primarily to the increased customer count. The heating load in 2020 was lower than forecast (3,577 HDD in 2020 vs. 3,789 HDD forecast), so weather normal volumes are higher than actual. Additionally, consumption per Rate 1 – Industrial customer increased at a faster rate beginning in 2018, and as a result, actual and weather-normal volumes were higher than forecast total 2020 volumes. Average consumption per Rate 2 customer decreased considerably in 2020 and has remained low, so actual volumes were materially lower than forecast. Average Rate 2 consumption per customer was 25,775m³ on average from 2014 to 2019 and declined to an average of 16,456m³ from 2020 to 2023. Rate 3 consumption per customer was forecast to decline in 2020 relative to previous years and the actual decline in consumption per customer was more significant than forecast. Consumption per Rate 3 customer was 40% lower in 2020 than 2017 – the most recent full year of data when the 2020 forecast was produced. Rate 4 and Rate 5 volumes vary considerably from year to year so forecasts are based on average consumption in prior years.

Table 3.2-5 Variances 2020 to 2021 Actual & Weather Normalized


	C	ustomers	3	Act	ual Volumes		Weather	Weather Normal Volumes			
Rate Class	2020 Actual	2021 Actual	Diff.	2020 Actual	2021 Actual	Diff.	2020 Normal	2021 Normal	Diff.		
Rate 1 - Residential	8,805	8,983	2.0%	16,837,081	17,299,257	2.7%	17,634,113	18,312,844	3.8%		
Rate 1 - Commercial	535	552	3.2%	5,028,438	5,306,940	5.5%	5,511,640	5,659,391	2.7%		
Rate 1 - Industrial	75	75	0.1%	2,067,358	2,226,121	7.7%	2,213,080	2,654,845	20.0%		
Rate 2	48	50	4.0%	784,724	829,096	5.7%	784,724	829,096	5.7%		
Rate 3	6	6	-5.6%	1,361,184	1,372,372	0.8%	1,384,060	1,420,006	2.6%		
Rate 4	40	41	0.6%	1,534,283	1,793,580	16.9%	1,534,283	1,793,580	16.9%		
Rate 5	4	4	0.0%	554,438	791,530	42.8%	554,438	791,530	42.8%		
Rate 6	1	1	0.0%	59,599,950	60,410,748	1.4%	59,599,950	60,410,748	1.4%		
Total	9,514	9,712	2.1%	87,767,455	90,029,645	2.6%	89,216,288	91,872,040	3.0%		

The heating load in 2021 was marginally lower than 2020 and lower than normal weather, which means that weather normalized volumes are higher than actual volumes. Increases in weathernormal volumes are generally in line with increases in customer counts for each rate class. The exceptions are Rate 1 – Industrial, which continued its relatively high annual increase in consumption per customer, and Rate 4 and Rate 5 that are generally unpredictable.

Table 3.2-6 Variances 2021 to 2022 Actual & Weather Normalized

	(Customer	s	Ac	tual Volumes		Weather Normal Volumes			
Rate Class	2021 Actual	2022 Actual	Diff.	2021 Actual	2022 Actual	Diff.	2021 Normal	2022 Normal	Diff.	
Rate 1 - Residential	8,983	9,131	1.6%	17,299,257	18,760,439	8.4%	18,312,844	18,631,763	1.7%	
Rate 1 - Commercial	552	567	2.6%	5,306,940	6,163,726	16.1%	5,654,094	6,123,993	8.3%	
Rate 1 - Industrial	75	77	2.6%	2,226,121	2,377,452	6.8%	2,654,845	2,421,872	-8.8%	
Rate 2	50	51	2.5%	829,096	839,041	1.2%	829,096	839,041	1.2%	
Rate 3	6	5	-11.8%	1,372,372	1,551,993	13.1%	1,420,006	1,552,971	9.4%	
Rate 4	41	42	2.5%	1,793,580	1,601,474	-10.7%	1,793,580	1,601,474	-10.7%	
Rate 5	4	4	0.0%	791,530	585,954	-26.0%	791,530	585,954	-26.0%	
Rate 6	1	1	0.0%	60,410,748	62,040,423	2.7%	60,410,748	62,040,423	2.7%	
Total	9,712	9,878	1.7%	90,029,645	93,920,502	4.3%	91,866,744	93,797,491	2.1%	

Heating load was higher in 2022 than 2021 and higher than normal weather, meaning weather normalized volumes are generally lower than actual volumes. The Rate 3 class lost one customer in 2022, but total volumes increased relative to 2021, despite lower heating volumes.

 EPC@R

Table 3.2-7
Variances 2022 to 2023 Actual & Weather Normalized

	(Customer	s	Ac	tual Volumes		Weather Normal Volumes			
Rate Class	2022 Actual	2023 Actual	Diff.	2022 Actual	2023 Actual	Diff.	2022 Normal	2023 Normal	Diff.	
Rate 1 - Residential	9,131	9,318	2.0%	18,760,439	17,466,767	2.2%	18,631,763	19,043,524	2.2%	
Rate 1 - Commercial	567	580	2.4%	6,163,726	5,823,050	-0.6%	6,123,993	6,364,791	3.9%	
Rate 1 - Industrial	77	79	2.4%	2,377,452	3,013,707	18.7%	2,421,872	2,874,546	18.7%	
Rate 2	51	51	-1.1%	839,041	869,131	3.6%	839,041	869,131	3.6%	
Rate 3	5	4	-20.0%	1,551,993	1,335,618	-10.5%	1,552,971	1,389,910	-10.5%	
Rate 4	42	43	4.2%	1,601,474	2,227,329	39.1%	1,601,474	2,227,329	39.1%	
Rate 5	4	4	0.0%	585,954	980,160	67.3%	585,954	980,160	67.3%	
Rate 6	1	1	0.0%	62,040,423	65,345,852	5.3%	62,040,423	65,345,852	5.3%	
Total	9,878	10,080	2.1%	93,920,502	97,061,614	5.3%	93,797,491	99,095,244	5.6%	

Heating load was lower in 2023 than 2022 and lower than normal weather, so weather normalized volumes are generally higher than actual volumes. Rate 1 – Industrial weather normalized volumes increased by 18.7% in 2023, which is partly a reversal of the decline in 2022. Additionally, crop yields were particularly high in November and December 2023. Which makes the volumes of this class materially higher in 2023 than 2022. This is also the primary reason Rate 4, Rate 5, and total system volumes are higher in 2023 than 2022. Rate 3 lost another customer, though it was a smaller than average customer, so volumes did not decline to the same extent.

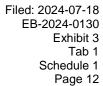
Table 3.2-8
Variances 2023 Actual & Weather Normalized to 2024 Bridge Year Forecast

	(Customer	s	Actual	Forecast Volu	ımes	Weather Normal Volumes			
Rate Class	2023	2024	Diff.	2023	2024	Diff.	2023	2024	Diff.	
Nate Olass	Actual	Bridge	Ditt.	Actual	Bridge	DIII.	Normal	Bridge	DIII.	
Rate 1 - Residential	9,318	9,448	1.40%	17,466,767	19,394,143	11.03%	19,043,524	19,394,143	1.84%	
Rate 1 - Commercial	580	585	0.86%	5,823,050	6,119,454	5.09%	6,364,791	6,119,454	-3.85%	
Rate 1 - Industrial	79	80	1.27%	3,013,707	2,579,897	-14.39%	2,874,546	2,579,897	-10.25%	
Rate 2	51	50	-1.96%	869,131	832,281	-4.24%	869,131	832,281	-4.24%	
Rate 3	4	5	25.00%	1,335,618	2,740,988	105.22%	1,389,910	2,740,988	97.21%	
Rate 4	43	45	4.65%	2,227,329	2,023,938	-9.13%	2,227,329	2,023,938	-9.13%	
Rate 5	4	4	0.00%	980,160	647,586	-33.93%	980,160	647,586	-33.93%	
Rate 6	1	1	0.00%	65,345,852	65,345,852	0.00%	65,345,852	65,345,852	0.00%	
Total	10,080	10,218	1.37%	97,061,614	99,684,139	2.70%	99,095,243	99,684,139	0.59%	

Filed: 2024-07-18 EB-2024-0130 Exhibit 3 Tab 1 Schedule 1 Page 11

1 2

3


4

5

6

7

As explained above, heating volumes in 2023 were lower than average. The 2024 forecast is based on normal weather so forecast 2024 volumes are generally higher than 2023 volumes. Forecast 2024 volumes for the Rate 1 – Industrial, Rate 4, and Rate 5 classes are lower than 2023 volumes because 2023 volumes were abnormally high due to high crop yields that are not forecast to continue to the test year. ENGLP connected a large new customer in Rate 3 with forecast consumption that is higher than the rest of the class combined.

 EPC@R

Table 3.2-9
Variances 2024 Bridge Year Forecast to 2025 Test Year Forecast

	Customers			Forecast Volumes			
Rate Class	2024	2025	Diff.	2024	2025	Diff.	
Rate Class	Bridge	Test	Dill.	Bridge	Test	Dill.	
Rate 1 - Residential	9,448	9,578	1.38%	19,394,143	19,778,416	1.98%	
Rate 1 - Commercial	585	590	0.85%	6,119,454	6,193,869	1.22%	
Rate 1 - Industrial	80	81	1.25%	2,579,897	2,686,373	4.13%	
Rate 2	50	50	0.00%	832,281	832,281	0.00%	
Rate 3	5	5	0.00%	2,740,988	3,918,036	42.94%	
Rate 4	45	46	2.22%	2,023,938	2,334,616	15.35%	
Rate 5	4	4	0.00%	647,586	647,586	0.00%	
Rate 6	1	1	0.00%	65,345,852	65,345,852	0.00%	
Total	10,218	10,355	1.34%	99,684,139	101,737,029	2.06%	

The increase in loads from the 2024 bridge year to the 2025 test year is due primarily to increased customer counts. The new Rate 3 customer in 2024 is forecast to increase its volumes in 2025.

The Rate 4 rate class has one known new customer with forecast volumes that are higher than

the average customer in the class. Additionally, consumption per Rate 1 customer for each of the

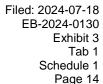
Rate 1 rate classes is forecast to increase each year, so the increase in forecast volumes exceeds

the increase in customer counts.

Filed: 2024-07-18 EB-2024-0130 Exhibit 3 Tab 1 Schedule 1 Page 13

3.3 Transactional Services / Storage and Transportation Revenue

1 2


- 3 ENGLP incurs gas transportation costs (to/from Enbridge) for storage, load balancing, and
- 4 transportation across Enbridge's system to ENGLP's distribution system. ENGLP currently
- 5 contracts for an annual Contract Demand in the amount of 186,100 m³ for its System Gas
- 6 customers.
- 7 ENGLP evaluates its Contract Demand requirements with Enbridge on an annual basis and will
- 8 balance the need to maximize its usage and minimize over run charges under this contract. For
- 9 the November 2023 renewal, Enbridge proposed no changes to the Contract Demand for SA1550
- 10 (for system gas customers) and SA25050 (for direct purchase customers). ENGLP plans to
- increase the Contract Demand with the Lakeview contract in 2024 and 2025 to meet expected
- 12 system gas peak day requirements. ENGLP also plans to increase the Contract Demand with
- the Enbridge contract in 2025 onwards to meet additional system gas peak day requirements.
- Historically, these costs are recovered in ENGLP's delivery charges as reflected in the EB-2018-
- 15 0336 cost of service rate filing through an embedded reference price. Any variance from that
- reference price are captured in the Purchased Gas Transportation Variance Account ("**PGTVA**").
- Additional information on the PGTVA is available in Exhibit 9.1.1.

18

19

Transportation Revenue & Rate

- 20 ENGLP is projected the need for \$1,061,196 in Transportation Revenue in 2025 in order to
- 21 recover the costs described above.
- 22 ENGLP is proposing to create a stand-alone Purchased Gas Transportation rate for Rate 1-5
- 23 customers, which would remove the requirement for an embedded reference price within
- 24 distribution rates, and allow for a more transparent view of the transportation costs as part of the
- 25 IRM filing. This is a consistent treatment with the current ENGLP Southern Bruce rate structure
- 26 (EB-2018-0264) and could also be compared to the treatment of Transmission rates for
- 27 embedded electricity distributors (most recently approved in EB-2023-0222).

1

2

3

Table 3.3 – Historical Transportation Costs

	2020T	2021A	2021A	2022A	2023A	2024B	2025T
Purchase Cost	\$675,544	\$773,297	\$834,054	\$1,018,535	\$957,123	\$1,039,369	\$1,061,196
Volumes (000's m³)	<u>28,475</u>	<u>28,756</u>	<u>29,877</u>	<u>32,935</u>	<u>31,889</u>	<u>34,338</u>	<u>36,391</u>
Cost per m ³	\$0.023724	\$0.026891	\$0.027916	\$0.030925	\$0.030014	\$0.030269	\$0.029161
YOY Variance		13%	4%	11%	-3%	1%	-4%

Transmission Service

- 4 ENGLP has not historically or currently, earned any transportation revenue, as all local production
- 5 that flows into the distribution system is used by ENGLP customers. As directed in EB-2010-0018,
- 6 ENGLP currently is required to charge NRG. a transportation fee of \$0.95 per MCF and an
- 7 administrative charge of \$250 per month for use of ENGLP's distribution system to transport gas.
- 8 ENGLP currently does not provide any transactional services, nor does it have any storage
- 9 capabilities.
- 10 ENGLP requests to continue to include the transmission tariff as part of its approved tariff (with
- an expected \$0 revenue requirement impact).

3.4 Other Revenue

14 15

16

23

12

- Other Revenues includes items such as specific service charges, late payment charges, service work etc. Other revenues are treated as an offset to the distribution revenue requirement. A
- 17 breakdown of these other revenues is as follows:
- a) Late Payment Charge: In compliance with OEB guidelines, overdue bills are subject to a late payment charge at a rate of. 1.5% / month, 19.56% / year (effective rate of 0.04896% compounded daily);
- b) Collection & Non-sufficient Funds Fees: Reconnection charges (\$85) for disconnection for non-payment and Returned Cheque/Payment Fees (\$20);
 - c) Connection Fees: Customer Transfer/Connection Charge: (\$35); and,

d) **Miscellaneous Revenue:** This revenue includes customer contributions for installation of service laterals, charges for line breaks, along with other regulated services charges.

3

1

2

- 4 The table below shows ENGLP's historical Other Revenue amounts, along with a forecast for
- 5 2024B and 2025T. ENGLP is forecasting its Other Revenues to remain relatively flat for the 2024
- 6 Bridge and 2025 Test.

7

Table 3.4-1 Other Revenue (\$)

Description	2020T	2020A	2021A	2022A	2023A	2024B	2025T
Late Payment Charge	\$17,880	\$15,052	\$31,480	\$42,394	\$58,295	\$36,940	\$36,940
Collection & NSF Fees	\$3,060	\$1,560	\$2,660	\$3,280	\$3,235	\$2,976	\$2,976
Connection Fees	\$36,015	\$24,841	\$40,171	\$34,495	\$26,350	\$37,332	\$37,332
Misc Revenue	\$90,823	<u>\$9,591</u>	<u>\$31,078</u>	<u>\$31,200</u>	<u>\$31,661</u>	<u>\$31,140</u>	<u>\$31,140</u>
Total	\$147,778	\$51,044	\$105,389	\$111,368	\$119,540	\$108,388	\$108,388
YOY Variance		-65%	106%	6%	7%	-9%	0%

8

9

10

11

12

13

14

15

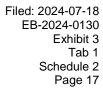
16

1718

ENGLP is proposing only one change to its Miscellaneous and Services Charges currently approved in its existing rate order. However, this does not impact the distribution revenue offsets, as this is an impact to Capital/Depreciation amounts and not to Operating Expenses. The proposed change is as follows:

Current:

• Installation of Service Lateral: \$100 for the first 20 meters. Additional if pipe length exceeds 20 meters.


Revised:

- Installation of Service Lateral: \$100 minimum for the first 20 meters for residential customers. Additional if pipe length exceeds 20 meters.
- As noted in Exhibit 1.3.16, ENGLP's Conditions of Service include a proposed revision to allocate connections costs in a more equitable way to avoid impact on existing ratepayers. The minimum fee for installation of a residential natural gas Service Lateral is \$100.00. Additional fees may be

Filed: 2024-07-18 EB-2024-0130 Exhibit 3 Tab 1 Schedule 1 Page 16

- 1 charged if the cost to bring the Service Lateral to the Meter location exceeds the maximum length
- 2 that ENGLP uses to set this fee or for non-residential customers in alignment with ENGLP's
- 3 customer connection policy.

Appendix A – Power Advisory Report

ENGLP Aylmer Weather Normalized Distribution System Throughput Forecast: 2024-2028

Prepared for: EPCOR Natural Gas Limited Partnership

Original: May 28, 2024

Revised: July 15, 2024

Submitted by: Andrew Blair Power Advisory

TABLE OF CONTENTS

٦.	INTRO	DUCTION	
	1.1	Summarized Results	2
2.	METHO	DDOLOGY	4
	2.1	Consumption of Weather Sensitive Classes	4
	2.2	Consumption of Non-Weather Sensitive Classes	5
	2.3	Customer Counts	5
	2.4	Consumption Tiers	5
3.	CLASS	SPECIFIC CONSUMPTION REGRESSIONS	7
	3.1	R1 Residential	7
	3.2	R1 Industrial	10
	3.3	R1 Commercial	14
	3.4	R3	17
4.	WEATH	HER NORMALIZATION	21
5.	WEATH	HER-NORMALIZED CLASS FORECASTS	25
	5.1	R1 Residential	25
	5.2	R1 Industrial	28
	5.3	R1 Commercial	31
	5.4	R3	34
6.	NON-V	VEATHER SENSITIVE CLASS FORECASTS	36
	6.1	R2 Seasonal	36
	6.2	R4	38
	6.3	R5	40
	6.4	R6	42
7	\^/E^TL	LED SENSITIVITY	4.4

LIST OF TABLES

Table 1. Consumption Forecast by Class	2
Table 2. Customer Forecast for 2022-2028	2
Table 3. 2025 Consumption Forecast by Tier	3
Table 4. R1 Residential Regression Model	8
Table 5. R1 Residential Model Error	10
Table 6. R1 Industrial Regression Model	11
Table 7. R1 Industrial Model Error	14
Table 8. R1 Commercial Regression Model	15
Table 9. R1 Commercial Model Error	17
Table 10. R3 Regression Model	18
Table 11. R3 Model Error	20
Table 12. HDD Rankings and Variance	22
Table 13. Forecast HDD 18°C	24
Table 14. Actual vs Normalized R1 Residential	25
Table 15. Forecasted R1 Residential Tiered Consumption	26
Table 16. Forecasted R1 Residential Customer Count	27
Table 17. Actual vs Normalized R1 Industrial	28
Table 18. Forecasted R1 Industrial Tiered Consumption	29
Table 19. Forecasted R1 Industrial Customer Count	30
Table 20. Actual vs Normalized R1 Commercial	31
Table 21. Forecasted R1 Commercial Tiered Consumption	32
Table 22 Forecasted R1 Commercial Customer Count	33

Table 23. Actual vs Normalized R3	34
Table 24. Actual vs Normalized R2 Seasonal	36
Table 25. Forecasted R2 Seasonal Tiered Consumption	37
Table 26. Forecasted R2 Seasonal Customer Count	38
Table 27. Actual vs Forecast R4	39
Table 28. Forecasted R4 Tiered Consumption	40
Table 29. Forecasted R4 Customer Count	40
Table 30. Actual vs Forecast R5	41
Table 31. Actual vs Forecast R6	43
Table 32. Low HDD Forecast	44
Table 33. Normal HDD Forecast	44
Table 34. High HDD Forecast	45
TABLE OF FIGURES	
Figure 1. R1 Residential Predicted vs Actual Observations	9
Figure 2. R1 Industrial Predicted vs Actual Observations (with November and Decement actuals adjustment)	
Figure 3. R1 Industrial Predicted vs Actual Observations	12
Figure 4. R1 Commercial Predicted vs Actual Observations	16
Figure 5. R3 Predicted vs Actual Observations	19
Figure 6. Weather Forecast for Various Methods	23
Figure 7. Actual vs Normalized R1 Residential	26
Figure 8. Actual vs Normalized R1 Industrial	29
Figure 9. Actual vs Normalized R1 Commercial	32
Figure 10. Actual vs Normalized R3	35
Figure 11. Actual vs Normalized R2 Seasonal	37

Figure 12. Actual vs Normalized R4	39
Figure 13. Actual vs Normalized Large Use R5	42
Figure 14. Actual vs Normalized R6	43
Figure 15. Weather Sensitivity – Total Consumption	45
Figure 16. Weather Sensitivity – R1 Residential	46

1. INTRODUCTION

This report outlines the results of, and methodology used to derive, the 2024 to 2028 weather normal throughput forecast (or "load forecast") prepared for EPCOR Natural Gas Limited Partnership ("ENGLP").

The methodology outlined in this report is consistent with the methodology used in ENGLP's last four load forecast updates¹ and is largely consistent with the methodology used in ENGLP's 2020 COS application (EB-2018-0336) and the methodology used by Natural Gas Resources Limited ("NRG") in previous rates applications.² Parties agreed to the results of the 2020 throughput forecast in settlement and the overall methodology was last approved by the OEB in EB-2010-0018. Alternate methods were tested but generally found to be inferior to the previously approved methodology.

The regression equations used to normalize and forecast ENGLP's weather sensitive load use monthly heating degree days as measured at Environment Canada's London CS weather station to take into account temperature sensitivity. This location is the closest weather station to ENGLP's service territory with strong historical weather data. ENGLP experiences peak loads in winter months, though certain rate classes are not weather sensitive. Environment Canada defines heating degree days as the difference between the average daily temperature and 18°C for each day. Heating degree days is 0 when the average temperature is above 18°C. Heating degree day data with alternate temperature thresholds other than 18°C wee considered, consistent with the OEB's electricity distributor load forecast filing requirements.

ENGLP serves six rate classes, R1 to R6, one of which (R1) contains three sub-classes: Residential, Commercial, and Industrial. Each R1 sub-class and the R3 class are weather-sensitive. Consumption of the R2, R4, R5, and R6 rate classes are not correlated to heating degree days. Consumption per customer forecasts for the R1 sub-classes use a baseload and excess consumption methodology to examine the impact of temperature on consumption. The R3 class's baseload consumption has fluctuated in historic years so the regression for this uses total consumption with a time trend.

¹ The 2020-24 forecast update dated April 17, 2020, the 2021-25 forecast update dated April 23, 2021, the 2022-2026 forecast update dated April 23, 2022, and the 2023-2027 forecast update dated April 17, 2023.

²This report and the throughput forecast model were prepared by Andrew Blair, who prepared the throughput forecast used in EB-2018-0336 and subsequent throughput forecast updates for ENGLP as a member of Elenchus Research Associates. In February 2021 <u>Power Advisory LLC</u> and <u>Elenchus Research Associates</u> announced a <u>strategic alliance</u> between the two firms.

Forecasts for non-weather sensitive classes are derived with average consumption per customer figures in recent years, consistent with previously approved forecasts. The number of years used on the average consumption per customer calculations is reassessed in each load forecast to account for changes in consumption patterns over time. Consumption forecasts for non-weather sensitive classes is further described in Section 6 of this report.

In addition to the weather variables, other variables such as economic variables, time trend variable, number of days and number of working days in each month, number of customers, and month of year variables, have been examined for weather sensitive rate classes. A COVID variable and COVID/weather interaction variables were considered for weather-sensitive classes but found not to be statistically significant. More details on the individual class specifications are provided in the next section. ENGLP does not have a DSM plan so no adjustments were made to the class forecasts to account for DSM savings.

1.1 Summarized Results

The following table summarizes the historic and weather normalized consumption.

Table 1. Consumption Forecast by Class

Normal Forecast	t							
	2022 Actual	2023 Actual	2023 Normalized	2024 Forecast	2025 Forecast	2026 Forecast	2027 Forecast	2028 Forecast
R1 Residential	18,760,439	17,466,767	19,043,524	19,394,143	19,778,416	20,165,775	20,556,215	20,949,733
R1 Industrial	2,377,452	3,013,707	2,654,845	2,579,897	2,686,373	2,795,837	2,908,361	3,024,023
R1 Commercial	6,163,726	5,823,050	5,659,391	6,119,454	6,193,869	6,268,637	6,343,760	6,419,235
R2 Seasonal	839,041	869,131	869,131	832,281	832,281	832,281	832,281	832,281
R3	1,551,993	1,335,618	1,389,910	2,740,988	3,918,036	3,895,600	3,875,300	3,856,801
R4	1,601,474	2,227,329	2,227,329	2,023,938	2,334,616	2,408,833	2,485,410	2,564,421
R5	585,954	980,160	980,160	647,586	647,586	647,586	647,586	647,586
R6	62,040,423	65,345,852	65,345,852	65,345,852	65,345,852	65,345,852	65,345,852	65,345,852
Total	93,920,502	97,061,614	98,170,143	99,684,138	101,737,027	102,360,400	102,994,765	103,639,931

The following table summarizes the historic and forecast customer/connections for 2020-2028:

Table 2. Customer Forecast for 2022-2028

Customers 2022 Actual 2023 Actual 2024 Forecast 2025 Forecast 2026 Forecast R1 Residential 9,131 9,318 9,448 9,578 9,708 9,838 9,968 R1 Industrial 80 81 84 86 77 79 83 R1 Commercial 605 567 580 585 590 595 600 R2 Seasonal 51 51 50 50 50 50 50 R3 5 4 5 5 5 5 5 R4 42 49 51 43 45 46 48 R5 4 4 4 4 4 4 4 R6

Forecasts of 2025 consumption by tier, for the classes billed based on volume tiers, is provided below.

10,218

10,355

10.494

10.631

10,770

9.878

10.080

Table 3. 2025 Consumption Forecast by Tier

2025 Tier Forecast

	Period	Tier 1	Tier 2	Tier 3	Total
R1 Residential		19,647,131	131,285		19,778,416
R1 Industrial		658,242	2,028,131		2,686,373
R1 Commercial		2,898,065	3,295,803		6,193,869
Seasonal	Apr-Oct	55,415	462,870	88,427	606,711
Seasonal	Nov-Mar	43,005	171,246	11,319	225,569
R4	Jan-Mar	36,580	7,406		43,986
R4	Apr-Dec	191,609	2,099,021		2,290,630

2. METHODOLOGY

Energy use for R1 Residential, R1 Industrial, R1 Commercial and R3 rate classes are forecast with multivariate regressions. Regressions were not selected for R2 Seasonal, R4, R5 and R6 rate classes as these classes do not exhibit sufficient sensitivity to the explanatory variables available for a statistical regression approach.

2.1 Consumption of Weather Sensitive Classes

Consumption of the three R1 rate classes are forecast using a base load and excess consumption method. Average monthly consumption per customer is first calculated for each class. The amounts are then reduced by the base load consumption, which is considered the average consumption in the summer months of July and August. The remaining consumption is considered the weather-sensitive load (or "excess" load). A baseline trend is applied to certain classes that have ongoing increasing consumption per customer that is not related to heating.

The excess load is regressed by the actual heating degree days in each month to determine the impact of cold weather on average consumption. A time-series (Prais-Winsten) regression is used to determine the coefficient, consistent with the methodology used in prior NRG throughput forecasts. A simple Ordinary Least Squares ("OLS") model is not appropriate as the errors exhibit a high level of autocorrelation (as demonstrated by Durbin-Watson statistics close to, or below, 1).

Alternate heating degree days data were also considered for each weather-sensitive class. Heating degree day figures were considered for a range of reference temperatures from 10°C to 20°C. Using alternate HDD temperatures considers the possibility that classes, on average, begin consuming natural gas for their heating load at temperatures other than 18°C.

Actual heating degree days are then multiplied by the coefficients and base load consumption is added back to determine the average predicted consumption in each month. Predicted total consumption of a class is determined by multiplying this sum by the actual number of customers.

The methodology is similar for the R3 class, but the base load is not removed before the regression. While the calculated base load consumption is generally consistent from year to year for the R1 classes, the base load appears to have declined in historic years.

To forecast 2024-2028 consumption, forecast heating degree days figures, as described in section 4, are used in place of actual heating degree days. Weather normalized consumption in historic years is determined by removing the deviations from average weather from consumption. This is done by multiplying the coefficients by the difference between actual and average heating degree days and applying the difference to actual consumption.

A set of interaction COVID/Weather variables were considered for the weather-sensitive classes but found to be not statistically significant. The values for this variable were set to 0 in all months before March 2020 and set equal to the applicable heating degree day variable for the months of March 2020 to December 2021. This variable was intended to capture potential incremental heating load for the Residential class, and reduced heating load for non-residential classes, resulting from people staying and working from home. This indicates that COVID did not have a material impact on heating load. A COVID variable, equal to 1 from March 2020 to December 2021 and 0 in all other months, was also tested and found not to be statistically significant.

2.2 Consumption of Non-Weather Sensitive Classes

Consumption of four rate classes (R2 Seasonal, R4, R5 and R6) are not weather-sensitive and do not exhibit sensitivity to the explanatory variables. Total and monthly volumes fluctuate from year to year, so a rolling average is used to forecast monthly consumption for these classes, with the exception of R4 in which a trend is also applied. The number of years used in the average calculations is explained in Section 6.

2.3 Customer Counts

Annual customer counts for 2024-2028 are forecast by applying a geometric mean annual growth rate to the 2023 average customer count for the R1 Industrial, R2 Seasonal and R4 rate classes. The R1 Residential forecast is based on 130 new attachments each year. The R1 Commercial forecast is based on 5 new customers per year. The customer counts for rate classes R3, R5, and R6 are unchanged through the 2024-2028 period except for known new customers in these rate classes. Calculations for each class are provided in section 5 and 6 of this report. Monthly customer counts are derived by applying equal percentage increases in each month such that the annual average of monthly forecasts is equal to the annual forecast.

2.4 Consumption Tiers

The R1 classes, R2 Seasonal Class, and R4 classes are billed according to consumption tiers (also known as volume blocks). Historic tiered data from January 2017 to November 2018 was used to derive weather-normal tiered forecasts. The allocation from total class throughput to tiered throughput has not been updated for this forecast.

The R1 classes are billed different rates on consumption above and below a 1,000 m³ threshold. As these classes are weather-sensitive, the share of energy consumed in each tier is determined by adjusting actual consumption in each month for each individual customer to weather normal consumption. This method allows a class's forecast consumption to be consistent with the weather normalized total volume while maintaining the consumption profile of the rate

classes. The weather-normalized consumption split between Tier 1 and Tier 2 in historic years is determined for each month and used to forecast the monthly splits in the forecast months. When two years of data was available, an average of the 2017 and 2018 splits was used. The R2 Seasonal and R4 classes are not weather-sensitive so the average of 2017 and 2018 tier splits were applied to total annual consumption.

3. CLASS SPECIFIC CONSUMPTION REGRESSIONS

3.1 R1 Residential

For the R1 Residential Class consumption the equation was estimated using 120 observations from 2014:01 to 2023:12. The natural logarithm of heating degree days at 18°C for the months of September to June were used, as measured at the London CS weather station as described in the introduction.

Several other variables were examined and found to not show a statistically significant relationship to energy usage. Those included alternate reference temperatures, economic indicators of full-time employment and GDP, days in each month, workdays in each month, a time trend, a COVID binary variable, and COVID/weather interaction variables.

A baseload trend was used to remove from 34.2m³ in 2014 to 42.6m³ in 2023 from the average consumption variable in each month. This amount is added back to the predicted values.

The following table outlines the resulting regression model:

Table 4. R1 Residential Regression Model

Model 1: Prais-Winsten, using observations 2014:01-2023:12 (T = 120)						
Dependent variable: E	xLNResAveraç	geTrend				
rho = 0.046263						
	coefficient	std. error	t-ratio	p-value		
const	0.13371	0.0599	2.23	2.8E-02		
LNHDDJanuary18	0.85304	0.0156	54.61	5.2E-81		
LNHDDFebruary18	0.85055	0.0159	53.59	3.8E-80		
LNHDDMarch18	0.84640	0.0162	52.10	7.3E-79		
LNHDDApril18	0.82457	0.0176	46.92	4.0E-74		
LNHDDMay18	0.78817	0.0206	38.28	5.0E-65		
LNHDDJune18	0.53653	0.0304	17.62	1.1E-33		
LNHDDSeptember18	0.43248	0.0251	17.25	6.2E-33		
LNHDDOctober18	0.74184	0.0188	39.38	2.8E-66		
LNHDDNovember18	0.81395	0.0169	48.14	2.8E-75		
LNHDDDecember18	0.85124	0.0162	52.61	2.6E-79		
Statistics based on the	rho-difference	d data				
Sum squared resid	7.53328	S.E. of regression 0.26				
R-squared	0.98525	Adjusted R-squared 0.98389				
F(10, 109)	675.834	P-value(F) 0.00000				
rho	0.00136	Durbin-Watsor	<u>1</u>	1.99706		

In the above table, and all regression results tables in the section, LN denotes natural logarithm, HDD denotes heating degree days, the month name denotes a dummy variable representing I in the labeled month and 0 in all other months, and the '18' denotes the reference HDD temperature of 18°C. The values within the LNHDDJanuary variable, for example, includes the natural logarithm of the number of heating degree days for each January, and 0 in all other months. The label for the dependent variable includes "Ex" denoting the values of this variable are the excess consumption above the class's base load.

Actual consumption and predicted consumption using the above model coefficients are compared in Figure 1.

Monthly Residential Consumption 4,000,000 Monthly M3 Consumption 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 Jul-2016 Feb-2016 Dec-2016 May-2017 Oct-2017 Mar-2018 Aug-2018 Apr-2020 Jan-2014 Vov-2014 Jan-2019 Jun-2019 Nov-2019 Sep-2020 Feb-202 //ay-2022 Actual ---Predicted

Figure 1. R1 Residential Predicted vs Actual Observations

Annual estimates using actual weather are compared to actual values in the table below. Mean absolute percentage error (MAPE) for annual estimates for the period is 1.5%. The MAPE calculated monthly over the period is 4.1%.

Table 5. R1 Residential Model Error

	Resident	ial	Absolute			
Year	Actual	Predicted	Error (%)			
2014	16,127,158	15,785,716	2.1%			
2015	14,948,329	15,337,184	2.6%			
2016	14,417,053	14,993,968	4.0%			
2017	15,400,135	15,417,551	0.1%			
2018	17,442,260	16,900,849	3.1%			
2019	18,000,452	17,699,947	1.7%			
2020	16,837,081	16,909,964	0.4%			
2021	17,299,257	17,196,811	0.6%			
2022	18,760,439	18,717,450	0.2%			
2023	17,466,767	17,549,250	0.5%			
Total	166,698,932	166,508,692	0.1%			
Mean	Mean Absolute Percentage Error (Annual) 1.5%					
Mean A	Absolute Percenta	ge Error (Monthly)	4.1%			

3.2 R1 Industrial

For the R1 Industrial Class consumption the equation was estimated using 120 observations from 2014:01 to 2023:12. The natural logarithm of heating degree days at 16°C for the months from August to May were used, as measured at the London CS weather station. Consumption in November and December 2023 was anomalously high due to high crop yields. The crop yields, and associated grain drying load, is uncharacteristic of typical class consumption and ENGLP's expectations of the class's load in the future so an alternate version of the regression was run using November and December 2022 consumption per customer in place of November and December 2023 volumes. Absent this adjustment, heating degree days in November and December would overstate the influence of weather on class loads.

Several other variables were examined and found to not show a statistically significant relationship to energy usage. Those included alternate reference temperatures, economic indicators of full-time employment and GDP, days in each month, workdays in each month, and a time trend.

A baseload trend was used to remove from 523.9m³ in 2014 to 1,024.9m³ in 2023 from the average consumption variable in each month. This amount is added back to the predicted values.

The following table outlines the resulting regression model:

Table 6. R1 Industrial Regression Model

Model 3: Prais-Winsten, using observations 2014:01-2023:12 (T = 120)							
Dependent variable: Ex	kLNR1AverageTr	end					
rho = 0.341842							
	coefficient	std. error	t-ratio	p-value			
const	1.874	0.256	7.308	4.76E-11			
LNHDDJanuary16	0.917	0.066	13.806	1.11E-25			
LNHDDFebruary16	0.913	0.068	13.522	4.69E-25			
LNHDDMarch16	0.926	0.069	13.455	6.57E-25			
LNHDDApril16	0.935	0.073	12.784	2.03E-23			
LNHDDMay16	0.927	0.080	11.606	9.23E-21			
LNHDDAugust16	1.984	0.388	5.110	1.38E-06			
LNHDDSeptember16	1.328	0.116	11.449	2.09E-20			
LNHDDOctober16	1.176	0.081	14.599	2.10E-27			
LNHDDNovember16	1.103	0.072	15.279	7.37E-29			
LNHDDDecember16	0.963	0.069	13.982	4.58E-26			
Statistics based on the r	ho-differenced	data					
Sum squared resid	116.6562	562 S.E. of regression 1.0345					
R-squared	0.8626	Adjusted R-sq	uared	0.8499			
F(10, 109)	41.6800	P-value(F)		1.01E-32			
rho	-0.0328	Durbin-Watson 2.0654					

Actual consumption and predicted consumption using the above model coefficients are compared in Figure 2.

Monthly R1 Industrial Consumption 600,000 Monthly M3 Consumption 500,000 400,000 300,000 200,000 100,000 Sep-2020 Jun-2014 Nov-2014 Apr-2015 Sep-2015 Feb-2016 Aug-2018 Jan-2014 Jul-2016 Dec-2016 Mar-2018 Feb-2021 Oct-2022 May-2017 Oct-2017 Jan-2019 Jun-2019 Vov-2019 Apr-2020 Jul-2021 Dec-202 May-2022 Mar-2023

Figure 2. R1 Industrial Predicted vs Actual Observations (with November and December 2023 actuals adjustment)

For reference, the predicted volumes without adjusting for November and December 2023 volumes is provided below.

Actual

Predicted

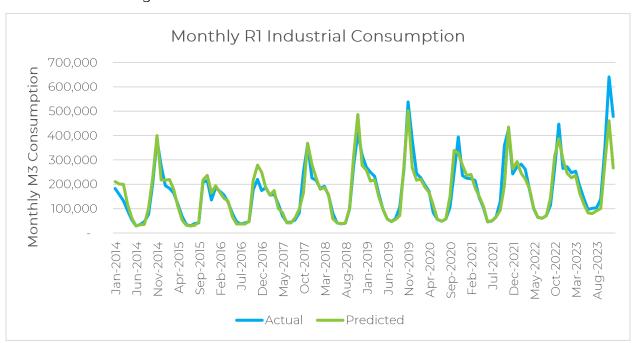


Figure 3. R1 Industrial Predicted vs Actual Observations

Annual estimates using actual weather are compared to actual values in the table below. Mean absolute percentage error (MAPE) for annual estimates for the period is 6.0%. The MAPE calculated monthly over the period is 12.6%.

Table 7. R1 Industrial Model Error

	R1 Industrial		Absolute
Year	Actual	Predicted	Error (%)
2014	1,666,209	1,799,840	8.0%
2015	1,430,900	1,511,044	5.6%
2016	1,462,707	1,573,628	7.6%
2017	1,752,123	1,719,182	1.9%
2018	2,050,371	2,072,474	1.1%
2019	2,461,420	2,173,569	11.7%
2020	2,067,358	2,133,667	3.2%
2021	2,226,121	2,034,437	8.6%
2022	2,377,452	2,352,264	1.1%
2023	2,606,905	2,325,035	10.8%
Total	20,101,567	19,695,140	2.0%
Mean Absolute Percentage Error (Annual)			6.0%
Mean Absolute Percentage Error (Monthly)			12.6%

3.3 R1 Commercial

For the R1 Commercial Class consumption the equation was estimated using 120 observations from 2014:01 to 2023:12. The natural logarithm of heating degree days at 18°C for the months from September to June were used, as measured at the London CS weather station.

Several other variables were examined and found to not show a statistically significant relationship to energy usage. Those included alternate reference temperatures, economic indicators of full-time employment and GDP, days in each month, workdays in each month, and a time trend.

A baseload trend was used to remove from 198.0m³ in 2014 to 239.9m³ in 2023 from the average consumption variable in each month. This amount is added back to the predicted values.

The following table outlines the resulting regression model:

Table 8. R1 Commercial Regression Model

Model 3: Prais-Winsten, using observations 2014:01-2023:12 (T = 120)								
Dependent variable: ExLNComAverageTrend								
rho = 0.315543								
	coefficient	std. error	t-ratio	p-value				
const	1.31720	0.2201	5.98	2.8E-08				
LNHDDJanuary18	0.91950	0.0532	17.29	5.2E-33				
LNHDDFebruary18	0.92001	0.0542	16.99	2.1E-32				
LNHDDMarch18	0.91238	0.0553	16.50	2.1E-31				
LNHDDApril18	0.88818	0.0593	14.99	3.1E-28				
LNHDDMay18	0.85187	0.0674	12.63	4.5E-23				
LNHDDJune18	0.40485	0.0904	4.48	1.8E-05				
LNHDDSeptember18	0.51957	0.0744	6.98	2.4E-10				
LNHDDOctober18	0.80927	0.0617	13.11	3.9E-24				
LNHDDNovember18	0.88207	0.0570	15.47	3.0E-29				
LNHDDDecember18	0.91448	0.0549	16.66	9.9E-32				
Statistics based on the	rho-difference	d data						
Sum squared resid	73.03951	S.E. of regression 0.819						
R-squared	0.89337	Adjusted R-squared 0.88358						
F(10, 109)	54.32262	P-value(F) 0.00000						
rho	-0.05334	Durbin-Watson 2.10666						

Actual consumption and predicted consumption using the above model coefficients are compared in Figure 4.

Monthly R1 Commercial Consumption 1,200,000 Monthly M3 Consumption 1,000,000 800,000 600,000 400,000 200,000 Feb-2016 Jul-2016 Dec-2016 Aug-2018 Sep-2015 Mar-2018 Feb-2021 Jul-2021 Jan-2014 Jun-2014 Vov-2014 May-2017 Oct-2017 Jan-2019 Jun-2019 Nov-2019 Apr-2020 Sep-2020 Dec-2021 Predicted Actual —

Figure 4. R1 Commercial Predicted vs Actual Observations

Annual estimates using actual weather are compared to actual values in the table below. Mean absolute percentage error (MAPE) for annual estimates for the period is 4.1%. The MAPE calculated monthly over the period is 7.1%.

Table 9. R1 Commercial Model Error

	R1 Commerc	cial	Absolute
Year	Actual	Predicted	Error (%)
2014	4,788,282	4,757,288	0.6%
2015	4,420,443	4,624,892	4.6%
2016	4,117,374	4,451,110	8.1%
2017	4,734,213	4,535,876	4.2%
2018	5,363,288	5,107,807	4.8%
2019	5,890,482	5,675,491	3.6%
2020	5,028,438	5,276,100	4.9%
2021	5,306,940	5,419,823	2.1%
2022	6,163,726	5,961,613	3.3%
2023	5,823,050	5,570,130	4.3%
Total	51,636,234	51,380,129	0.5%
Mean Ab	4.1%		
Mean Ab	7.1%		
(Monthly)		

3.4 R3

For the R3 Class consumption the equation was estimated using 120 observations from 2014:01 to 2023:12. The natural logarithm of heating degree days at 20° C for the months from September to May were used, as measured at the London CS weather station. A natural log of a time trend is also included, beginning at $\ln(10)$ in January 2014 (increasing to $\ln(121)$ in December 2023) is used as this class exhibits declining average consumption over time.

A dummy variable for June was included as consumption in June was typically greater than what was expected based on the weather in that month. A dummy variable for the shoulder months of March, April, May, September, October, and November was also used to reflect lower consumption in those months than could be explained by heating degree days.

Several other variables were examined and found to not show a statistically significant relationship to energy usage. Those included alternate weather variables, economic indicators of full-time employment and GDP, days in each month, and workdays in each month.

The following table outlines the resulting regression model:

Table 10. R3 Regression Model

Model 4: Prais-Winsten, using observations 2014:01-2023:12 (T = 120)								
Dependent variable: LNContractR3Average								
rho = 0.460215								
	coefficient	std. error	t-ratio	p-value				
const	10.10331	0.2616	38.63	1.2E-64				
LNHDDJanuary20	0.30081	0.0167	18.06	2.9E-34				
LNHDDFebruary20	0.29498	0.0170	17.37	6.3E-33				
LNHDDMarch20	0.71034	0.1592	4.46	2.0E-05				
LNHDDApril20	0.69684	0.1703	4.09	8.3E-05				
LNHDDMay20	0.68227	0.1935	3.53	6.2E-04				
LNHDDSeptember20	0.07438	0.0186	3.99	1.2E-04				
LNHDDOctober20	0.66846	0.1804	3.71	3.4E-04				
LNHDDNovember20	0.69591	0.1650	4.22	5.2E-05				
LNHDDDecember20	0.27867	0.0170	16.42	5.2E-31				
InTrend	-0.31692	0.0613	-5.17	1.1E-06				
Shoulder	-2.73990	1.0214	-2.68	8.5E-03				
June	0.27118	0.0855	3.17	2.0E-03				
Statistics based on the rl	no-differenced d	ata						
Sum squared resid	6.15956	S.E. of regression 0.2399						
R-squared	0.92379	Adjusted R-squared 0.9152						
F(12, 107)	74.27188	P-value(F) 3.56E-4						
rho	-0.07971	Durbin-Watson 2.153						

Actual consumption and predicted consumption using the above model coefficients are compared in Figure 5.

Monthly R3 Consumption 400,000 Monthly M3 Consumption 350,000 300,000 250,000 200,000 150,000 100,000 50,000 Sep-2015 Feb-2016 Sep-2020 Apr-2015 Dec-2016 Feb-2021 Jul-2021 Nov-2014 Jul-2016 May-2017 Oct-2017 Mar-2018 Aug-2018 Jan-2019 Jun-2019 Nov-2019 Apr-2020 May-2022 Oct-2022 Dec-2021

Actual

Predicted

Figure 5. R3 Predicted vs Actual Observations

Annual estimates using actual weather are compared to actual values in the table below. Mean absolute percentage error (MAPE) for annual estimates for the period is 10.6%. The MAPE calculated monthly over the period is 22.6%. The MAPEs are relatively high for this class but more variance can be expected in a class with only 4 to 6 customers.

Table 11. R3 Model Error

	R3		Absolute					
Year	Actual	Predicted	Error (%)					
2014	1,792,006	2,040,828	13.9%					
2015	1,692,328	1,588,739	6.1%					
2016	1,492,346	1,366,848	8.4%					
2017	1,653,466	1,438,890	13.0%					
2018	1,711,013	1,842,900	7.7%					
2019	1,510,164	1,756,983	16.3%					
2020	1,361,184	1,600,908	17.6%					
2021	1,372,372	1,423,148	3.7%					
2022	1,551,993	1,251,421	19.4%					
2023	1,335,618	935,681	29.9%					
Total	15,472,490	15,246,345	1.5%					
Mean Absolute Percentage Error (Annual) 13.6%								
Mean Ab	solute Percentage	Error (Monthly)	22.2%					

4. WEATHER NORMALIZATION

It is not possible to accurately forecast weather for months or years in advance. Therefore, one can only base future weather expectations on what has happened in the past. Individual years may experience unusual spells of weather (unusually cold winter, unusually warm summer, etc.). However, over time, these unusual spells "average" out. While there may be trends over several years (e.g., warmer winters for example), using several years of data rather than one particular year filters out the extremes of any particular year. While there are several different approaches to determining an appropriate weather normal, ENGLP has adopted the 10-year trend of 10-year monthly degree day averages.

Various methods were analysed to determine the most appropriate methodology to forecast monthly heating degree days from 2024 to 2028. A 5-year average, 10-year average, 20-year trend, 5-year weighted average, 10-year trend of 5 year averages, 10-year trend of 10-year averages, and the midpoint of the 10-year average and 20-year trend were considered.

Data from 1984 to 2023 was used to evaluate each method's predicted heating degree days against the actual heating degree days for each month since January 2004. Data from Environment Canada's London Airport weather station was used for the period from 1984 to 2002. London Airport's temperature data is only provided until 2002, which is approximately when temperature data for London CS begins. Data from the London A weather station (another London Airport weather station with temperature data as of March 2012) is used in place of London CS when data from that station is unavailable.

Each method was ranked according to the magnitude of the deviations between predicted and actual heating degree days, with 1 being the closest predicted value and 7 being the furthest. The rankings were done on monthly and annual bases. The following table shows the annual rankings, average annual and monthly rankings, and variance of the deviations on monthly and annual bases.

Table 12. HDD Rankings and Variance

Year	5-Year Average	10-Year Average	20- Year Trend	Weighted 5-Year Average	10-Year Trend (5MA)	10-Year Trend (10MA)	10-Yr Avg & 20-Yr Trend Midpoint
2004	6	2	5	4	7	7	3
2005	4	3	6	2	7	1	5
2006	6	2	4	7	1	5	3
2007	2	4	6	3	7	1	5
2008	1	4	6	3	7	2	5
2009	1	2	6	3	4	7	5
2010	3	5	2	7	6	7	4
2011	1	6	5	4	7	2	3
2012	5	6	1	4	7	3	2
2013	4	3	7	6	7	2	5
2014	4	2	7	6	3	7	5
2015	4	2	5	1	7	6	3
2016	6	3	5	7	7	2	4
2017	2	4	6	7	1	3	5
2018	1	5	2	7	6	3	4
2019	5	7	1	4	2	6	3
2020	1	3	5	6	7	2	4
2021	1	5	3	2	7	6	4
2022	5	3	6	7	1	2	4
2023	3	7	1	2	5	6	4
Average	Rank						
Monthly	3.99	3.85	4.19	4.23	3.96	3.85	3.93
Annual	3.25	3.90	4.45	4.60	4.70	3.10	4.00
Variance	between F	Predicted a	nd Actua	I			
Monthly	3,977	3,642	4,047	4,301	3,886	3,586	3,805
Annual	65,664	67,132	72,586	76,701	72,477	60,791	68,958

The rankings and variance analysis reveals that the 10-year trend of the 10-year average is the best methodology for predicting future heating degree days. On a monthly and annual basis, the predicted heating degree days using this methodology is closest to actual heating degree days and the deviations from actual weather have the lowest variance among the methods analysed.

For clarity, the 10-year trend of the 10-year moving average is the annualized trend of one 10-year period to the next 10-year period. For example, the 2004 predicted value uses the trend from the average heating degree days from 1984 and 1993 to the average from 1994 and 2003.

This method is the best predictive method as it accounts for trends in heating degree days over time without being over-reliant on data of any one year. Simple averages do not consider weather trends over time and typical trend forecasts can be significantly impacted by single data points.

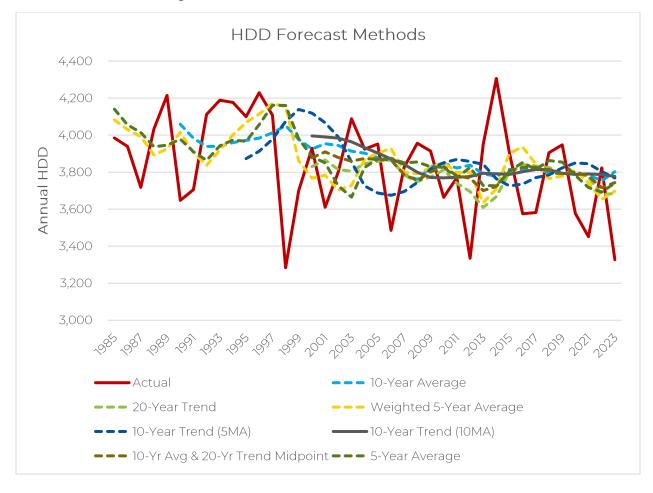


Figure 6. Weather Forecast for Various Methods

In Figure 6, actual HDD and the selected 10-year trend of 10-year moving averages metric are in solid lines and the dotted lines represent the other methods considered.

The monthly predicted and forecast heating degree days are detailed in the following tables for heating degree days at 18°C.

Table 13. Forecast HDD 18°C

18°C	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total	Actual
2014	720	661	543	307	156	31	6	11	68	253	406	633	3,794	4,306
2015	719	667	545	310	151	29	6	10	72	250	416	630	3,804	3,904
2016	722	677	548	313	144	28	7	10	74	249	422	618	3,813	3,575
2017	727	682	547	318	138	28	7	11	74	246	424	611	3,813	3,582
2018	727	676	547	319	133	29	7	11	74	243	424	608	3,798	3,905
2019	732	668	547	325	126	29	7	11	74	241	427	604	3,792	3,947
2020	733	662	549	332	124	29	6	10	73	239	435	601	3,793	3,577
2021	729	655	552	341	126	29	6	10	71	239	437	593	3,789	3,452
2022	722	650	550	348	132	29	5	10	68	237	442	588	3,780	3,829
2023	722	649	552	354	137	29	4	9	65	236	442	584	3,783	3,327
2024	717	639	551	359	143	29	3	9	59	231	443	572	3,754	
2025	715	636	551	363	144	29	3	9	57	229	444	567	3,747	
2026	714	632	551	367	145	29	2	9	55	228	446	563	3,741	
2027	713	629	551	372	146	29	2	8	53	226	448	558	3,734	
2028	712	625	551	376	147	28	1	8	52	224	450	553	3,727	

5. WEATHER-NORMALIZED CLASS FORECASTS

5.1 R1 Residential


Incorporating the normalized and forecast heating degree days the following weather corrected consumption and forecast values are calculated:

Table 14. Actual vs Normalized R1 Residential

	R1 Residential						
		Consumption			Norm	alized	
Year	Customers	Per	Total	Actual	Per	Total	
		Customer			Customer	, 5 5 4.	
2014	7,470	2,162	16,150,603	16,127,158	1,950	14,551,718	
2015	7,726	1,938	14,974,492	14,948,329	1,942	15,001,278	
2016	7,956	1,813	14,425,323	14,417,053	1,959	15,572,288	
2017	8,110	1,892	15,347,218	15,400,135	1,973	16,047,138	
2018	8,400	2,075	17,426,321	17,442,260	1,982	16,658,300	
2019	8,657	2,083	18,035,211	18,000,452	1,994	17,230,177	
2020	8,805	1,911	16,828,031	16,837,081	2,009	17,698,028	
2021	8,983	1,927	17,311,669	17,299,257	2,022	18,146,276	
2022	9,131	2,055	18,768,709	18,760,439	2,033	18,557,330	
2023	9,318	1,875	17,474,225	17,466,767	2,049	19,083,780	
2024	9,448				2,055	19,394,143	
2025	9,578				2,067	19,778,416	
2026	9,708				2,079	20,165,775	
2027	9,838				2,092	20,556,215	
2028	9,968				2,104	20,949,733	

Figure 7. Actual vs Normalized R1 Residential

A tiered forecast was produced using actual individual customer data adjusted to weathernormal consumption.

Table 15. Forecasted R1 Residential Tiered Consumption

	Rì	l Resident	ial
	Tier 1	Tier 2	Total
2022	18,633,590	126,849	18,760,439
2023	18,914,526	128,998	17,466,767
2024	19,265,019	129,124	19,394,143
2025	19,647,131	131,285	19,778,416
2026	20,032,319	133,456	20,165,775
2027	20,420,578	135,637	20,556,215
2028	20,811,906	137,828	20,949,733

The R1 Residential customer count is forecast to increase by 130 customers per year through the 2024-2028 period.

Table 16. Forecasted R1 Residential Customer Count

Re	esidential	Percent of
Year	Customers	Prior Year
2014	7,470	
2015	7,726	103.4%
2016	7,956	103.0%
2017	8,110	101.9%
2018	8,400	103.6%
2019	8,657	103.1%
2020	8,805	101.7%
2021	8,983	102.0%
2022	9,131	101.6%
2023	9,318	102.0%
2024	9,448	101.4%
2025	9,578	101.4%
2026	9,708	101.4%
2027	9,838	101.4%
2028	9,968	101.4%

5.2 R1 Industrial

Incorporating the normalized and forecast heating degree days the following weather corrected consumption and forecast values are calculated:

Table 17. Actual vs Normalized R1 Industrial

	R1 Industrial						
		Consu	Consumption		Norm	alized	
Year	Customers	Per Customer	Total	Actual	Per Customer	Total	
2014	63	26,306	1,659,456	1,666,209	25,679	1,622,173	
2015	62	23,186	1,439,435	1,430,900	25,414	1,564,050	
2016	65	22,433	1,461,881	1,462,707	26,264	1,716,903	
2017	66	26,620	1,752,499	1,752,123	27,027	1,778,490	
2018	68	29,425	2,005,771	2,050,371	27,741	1,927,753	
2019	73	33,281	2,440,611	2,461,420	28,530	2,105,215	
2020	75	27,629	2,067,592	2,067,358	29,345	2,196,313	
2021	75	29,576	2,215,758	2,226,121	30,141	2,267,564	
2022	77	31,039	2,384,840	2,377,452	30,893	2,367,134	
2023	79	38,124	2,999,059	3,013,707	31,654	2,499,328	
2024	80				32,207	2,579,897	
2025	81				32,954	2,686,373	
2026	83				33,700	2,795,837	
2027	84				34,447	2,908,361	
2028	86				35,195	3,024,023	

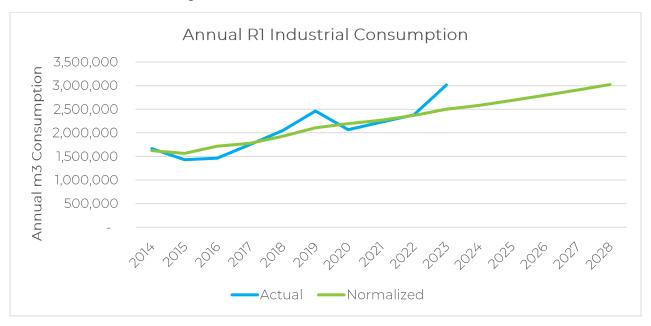


Figure 8. Actual vs Normalized R1 Industrial

A tiered forecast was produced using actual individual customer data adjusted to weathernormal consumption.

Table 18. Forecasted R1 Industrial Tiered Consumption

		R1 Industrial	
	Tier 1	Tier 2	Total
2022	561,145	1,816,307	2,377,452
2023	798,103	2,541,872	3,013,707
2024	628,492	1,951,405	2,579,897
2025	658,242	2,028,131	2,686,373
2026	688,855	2,106,981	2,795,837
2027	720,354	2,188,007	2,908,361
2028	752,761	2,271,262	3,024,023

The Geometric mean of the annual growth from 2019 to 2023 was used to forecast the growth rate from 2024 to 2028. The number of customers in this class grew at a higher rate from 2014 to 2019 than since 2019 so the growth rates from these years was excluded as they do not reflect the current customer growth trend.

The following table includes the customer Actual / Forecast customer count on this basis:

Table 19. Forecasted R1 Industrial Customer Count

R1 li	ndustrial	Percent of
Year	Customers	Prior Year
2014	63	
2015	62	98.4%
2016	65	105.0%
2017	66	101.0%
2018	68	103.5%
2019	73	107.6%
2020	75	102.0%
2021	75	100.1%
2022	77	102.6%
2023	79	102.4%
2024	80	101.8%
2025	81	101.8%
2026	83	101.8%
2027	84	101.8%
2028	86	101.8%

5.3 R1 Commercial

Incorporating the normalized and forecast heating degree days the following weather corrected consumption and forecast values are calculated:

Table 20. Actual vs Normalized R1 Commercial

	R1 Commercial								
		Consumption			Normalized				
Year	Customers	Per Customer	Total	Actual	Per Customer	Total			
2014	437	10,964	4,795,706	4,788,282	9,965	4,352,936			
2015	445	9,935	4,421,983	4,420,443	10,109	4,500,547			
2016	453	9,065	4,102,131	4,117,374	10,172	4,619,881			
2017	462	10,219	4,716,893	4,734,213	10,222	4,732,258			
2018	487	10,958	5,332,657	5,363,288	10,242	5,017,159			
2019	536	10,970	5,880,685	5,890,482	10,279	5,519,688			
2020	535	9,378	5,017,149	5,028,438	10,331	5,539,888			
2021	552	9,615	5,309,753	5,306,940	10,371	5,719,789			
2022	567	10,869	6,157,559	6,163,726	10,402	5,899,372			
2023	580	10,024	5,817,409	5,823,050	10,459	6,076,900			
2024	585				10,462	6,119,454			
2025	590				10,499	6,193,869			
2026	595				10,536	6,268,637			
2027	600				10,574	6,343,760			
2028	605				10,611	6,419,235			

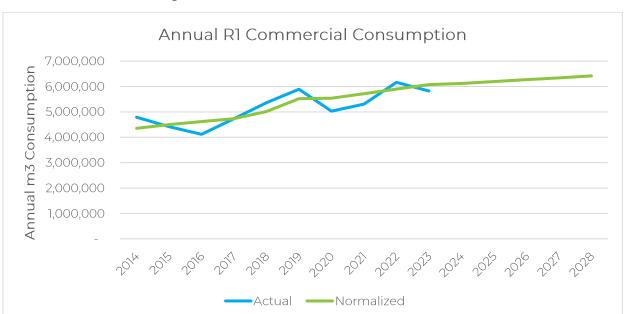


Figure 9. Actual vs Normalized R1 Commercial

A tiered forecast was produced using actual individual customer data adjusted to weathernormal consumption.

Table 21. Forecasted R1 Commercial Tiered Consumption

	D.	l Camana a vais	. I
	R	l Commercia	31
	Tier 1	Tier 2	Total
2022	2,874,696	3,289,030	6,163,726
2023	3,161,469	3,522,151	5,823,050
2024	2,860,705	3,258,749	6,119,454
2025	2,898,065	3,295,803	6,193,869
2026	2,935,634	3,333,004	6,268,637
2027	2,973,410	3,370,349	6,343,760
2028	3,011,395	3,407,840	6,419,235

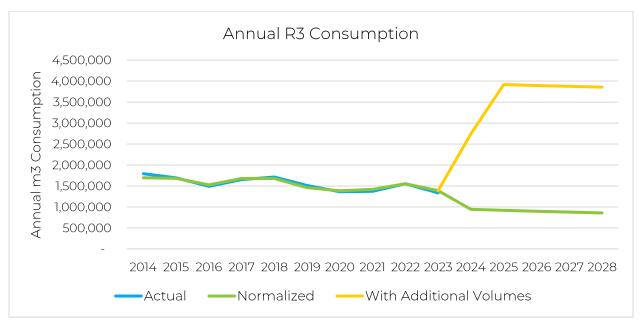
The Geometric mean of the annual growth from 2014 to 2023 was used to forecast the growth rate from 2024 to 2028. The following table includes the customer Actual / Forecast customer count on this basis:

Table 22. Forecasted R1 Commercial Customer Count

R1 C	ommercial	Percent of
Year	Customers	Prior Year
2014	33	
2015	34	102.5%
2016	35	103.7%
2017	36	101.4%
2018	37	101.9%
2019	37	100.5%
2020	40	110.2%
2021	41	100.6%
2022	42	102.5%
2023	43	104.2%
2024	45	103.2%
2025	46	103.2%
2026	48	103.2%
2027	49	103.2%
2028	51	103.2%

5.4 R3

The R3 rate class is gaining one large customer with forecast volumes of 1,797,950m³ in 2024 and 3,000,000m³ annual volumes annually beginning in 2025. The R3 forecast is based on forecast volumes of the four customers in the class plus the additional volumes of this customer. Incorporating the normalized and forecast heating degree days, continuing time trend and calendar dummy variables, the following weather corrected consumption and forecast values are calculated:


Table 23. Actual vs Normalized R3

	R3									
Year	Cust.	Consur	nption	Normalized						
		Per	Total /	Per	Total	Additional	Total w/			
		Customer	Actual	Customer		Volumes	Additional			
2014	4	448,002	1,792,006	423,716	1,694,865					
2015	4	423,082	1,692,328	420,181	1,680,722					
2016	4	373,087	1,492,346	381,386	1,525,544					
2017	5	375,566	1,690,049	381,871	1,676,985					
2018	6	285,169	1,711,013	279,581	1,677,487					
2019	6	251,694	1,510,164	243,342	1,460,052					
2020	6	226,864	1,361,184	230,677	1,384,060					
2021	6	244,734	1,386,823	253,437	1,420,006					
2022	5	310,399	1,551,993	310,594	1,552,971					
2023	4	333,905	1,335,618	347,477	1,389,910					
2024	5			235,759	943,038	1,797,950	2,740,988			
2025	5			229,509	918,036	3,000,000	3,918,036			
2026	5			223,900	895,600	3,000,000	3,895,600			
2027	5			218,825	875,300	3,000,000	3,875,300			
2028	5			214,200	856,801	3,000,000	3,856,801			

For clarify, the total normalized forecast excluding the new large customer is the forecast per customer multiplied by the four existing customers.

Figure 10. Actual vs Normalized R3

The R3 class has fluctuated between 4 and 6 customers since 2009. The current count of 4 customers is expected to increase to 1 in January 2024 with one known new customer.

6. NON-WEATHER SENSITIVE CLASS FORECASTS

6.1 R2 Seasonal

Monthly consumption is forecast using a three-year average of consumption per customer in each month. The sum of monthly forecast values per customer are used to calculate annual total consumption as follows:

Table 24. Actual vs Normalized R2 Seasonal

	R2 Seasonal								
		Consun	nption		Norm	alized			
Year	Customers	Per Customer	Total	Actual	Per Customer	Total			
2014	65	30,594	1,980,940	1,988,124					
2015	63	20,017	1,256,038	1,242,867					
2016	59	23,524	1,382,013	1,394,132					
2017	55	26,211	1,435,062	1,410,653					
2018	54	28,488	1,526,500	1,520,647					
2019	49	25,819	1,267,264	1,279,499					
2020	48	16,202	781,723	784,724					
2021	50	16,464	825,967	829,096					
2022	51	16,249	835,459	839,041					
2023	51	16,910	859,570	869,131					
2024	50				16,541	832,281			
2025	50				16,541	832,281			
2026	50				16,541	832,281			
2027	50				16,541	832,281			
2028	50				16,541	832,281			

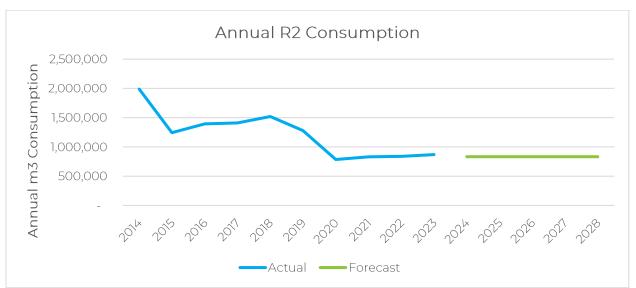


Figure 11. Actual vs Normalized R2 Seasonal

An average of tiered consumption shares in 2017 and 2018 was used to forecast tiered consumption in future years. The R2 seasonal class has three tiers with different rates in April to October and November to March. Tier 1 consumption is consumption up to 1,000 m³, tier 2 applies to consumption between 1,000 m³ and 25,000 m³, and all consumption above 25,000 m³ is considered Tier 3.

Table 25. Forecasted R2 Seasonal Tiered Consumption

	R2 Seasonal								
	Ар	ril 1 to Oct 3	31	N	Nov 1 to Mar 31				
	Tier 1	Tier 2	Tier 3	Tier 1	Tier 2	Tier 3	Total		
2022	55,865	466,630	89,145	43,354	172,637	11,411	839,041		
2023	57,868	483,364	92,342	44,909	178,828	11,820	869,131		
2024	55,415	462,870	88,427	43,005	171,246	11,319	832,281		
2025	55,415	462,870	88,427	43,005	171,246	11,319	832,281		
2026	55,415	462,870	88,427	43,005	171,246	11,319	832,281		
2027	55,415	462,870	88,427	43,005	171,246	11,319	832,281		
2028	55,415	462,870	88,427	43,005	171,246	11,319	832,281		

The R2 customer count declined from 2014 to 2019 and has been stable around 50 customers since 2019. The number of R2 customers is forecast to remain at 50 from 2024 to 2028. The following table includes the customer Actual / Forecast customer count on this basis:

Table 26. Forecasted R2 Seasonal Customer Count

R2	Seasonal	Percent of
Year	Customers	Prior Year
2014	65	
2015	63	96.9%
2016	59	93.6%
2017	55	93.2%
2018	54	97.9%
2019	49	91.6%
2020	48	98.3%
2021	50	104.0%
2022	51	102.5%
2023	51	98.9%
2024	50	98.1%
2025	50	100.0%
2026	50	100.0%
2027	50	100.0%
2028	50	100.0%

6.2 R4

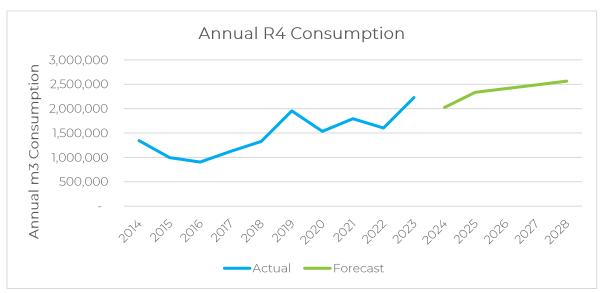

Monthly consumption is forecast using a three-year average of consumption per customer in each month, with two adjustments. Consumption in November and December 2023 was anomalously high due to high crop yields. The crop yields, and associated grain drying load, is uncharacteristic of typical class consumption and ENGLP's expectations of the class's load in the future so November and December 2023 monthly volumes are excluded from average consumption forecast calculations. Forecast consumption in November and December of each year is calculated based on November and December 2021-2022 volumes. There is one known new customer in 2024 with forecast consumption that is materially higher than the average customer in the class. The increasing in consumption per customer resulting from this additional customer is included in the per customer forecast. The customer is forecast to attach in July 2024 so half of its incremental loads are added in 2024 and the remaining half is added in 2025.

Table 27. Actual vs Forecast R4

	R4									
		Consur	mption		Normalized					
Year	Customers	Per Customer	Total	Actual	Per Customer	Total				
2012	25	23,036	575,898	678,458						
2014	33	39,661	1,318,721	1,345,169						
2015	34	29,232	996,339	994,710						
2016	35	25,140	888,266	904,160						
2017	36	31,238	1,119,348	1,124,029						
2018	37	35,029	1,278,561	1,327,953						
2019	37	50,232	1,841,844	1,953,378						
2020	40	37,145	1,501,271	1,534,283						
2021	41	43,427	1,766,026	1,793,580						
2022	42	37,551	1,564,633	1,601,474						
2023	43	50,688	2,200,708	2,227,329						
2024	45				44,732	2,023,938				
2025	46				50,012	2,334,616				
2026	48				50,012	2,408,833				
2027	49				50,012	2,485,410				
2028	51				50,012	2,564,421				

Figure 12. Actual vs Normalized R4

An average of tiered consumption shares in 2017 and 2018 was used to forecast tiered consumption in future years. The R4 class has two tiers with different rates in January to March

and April to December. Tier 1 consumption is consumption up to 1,000 m³ and all consumption above 1,000 m³ is considered Tier 2.

Table 28. Forecasted R4 Tiered Consumption

			R4		
	Jan 1 to	Mar 31	Apr 1 to	o Dec 31	
	Tier 1	Tier 2	Tier 1	Tier 2	Total
2022	25,093	5,080	131,438	1,439,863	1,601,474
2023	34,899	7,065	182,804	2,002,561	2,227,329
2024	31,712	6,420	166,111	1,819,695	2,023,938
2025	36,580	7,406	191,609	2,099,021	2,334,616
2026	37,743	7,641	197,700	2,165,749	2,408,833
2027	38,943	7,884	203,985	2,234,598	2,485,410
2028	40,181	8,135	210,470	2,305,636	2,564,421

The Geometric mean of the annual growth from 2014 to 2023 was used to forecast the growth rate from 2024 to 2028.

The following table includes the customer Actual / Forecast customer count on this basis:

Table 29. Forecasted R4 Customer Count

	R4	Percent of
Year	Customers	Prior Year
2014	33	
2015	34	102.5%
2016	35	103.7%
2017	36	101.4%
2018	37	101.9%
2019	37	100.5%
2020	40	110.2%
2021	41	100.6%
2022	42	102.5%
2023	43	104.2%
2024	45	103.2%
2025	46	103.2%
2026	48	103.2%
2027	49	103.2%
2028	51	103.2%

6.3 R5

Consumption per R5 customer has fluctuated considerably since 2014. The 2024 to 2028 forecast is based on a 3-year average from 2021 to 2023, excluding anomalously high consumption in November and December 2023. As described in the forecast for the R4 rate

class, consumption in November and December 2023 was anomalously high because of high crop yields. The crop yields, and associated grain drying load, is uncharacteristic of typical class consumption and ENGLP's expectations of the class's load in the future so November and December 2023 monthly volumes are excluded from average consumption forecast calculations. Forecast consumption in November and December of each year is calculated based on November and December 2021-2022 volumes.

Table 30. Actual vs Forecast R5

	R5								
		Consumption			Norm	alized			
Year	Customers	Per Customer	Total	Actual	Per Customer	Total			
2014	5	225,771	1,147,669	1,128,958					
2015	5	134,524	672,622	672,622					
2016	5	112,572	562,860	562,860					
2017	5	186,530	870,472	753,900					
2018	4	149,492	610,424	624,337					
2019	4	231,801	927,203	927,203					
2020	4	138,609	554,438	554,438					
2021	4	197,882	791,530	791,530					
2022	4	146,488	585,954	585,954					
2023	4	245,040	980,160	980,160					
2024	4				161,896	647,586			
2025	4				161,896	647,586			
2026	4				161,896	647,586			
2027	4				161,896	647,586			
2028	4				161,896	647,586			

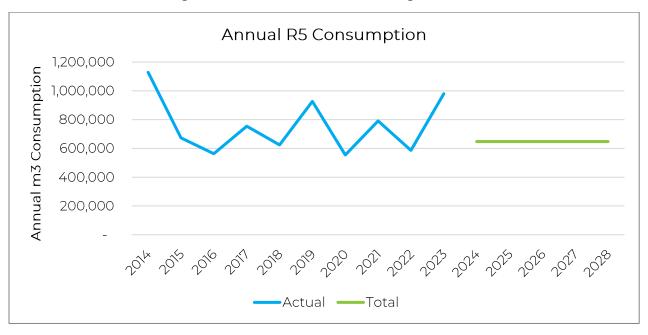


Figure 13. Actual vs Normalized Large Use R5

The R5 class had 5 customers from 2014 to 2017 and had 4 customers from 2018 to 2023. The current customer count of 4 customers is forecast to continue through 2024 to 2028.

6.4 R6


R6 consumption increased significantly in 2019 over historic volumes. The 2024-2028 forecast uses 2023 consumption as forecast consumption in each year.

Table 31. Actual vs Forecast R6

	R6							
		Consun	nption		Normalized			
Year	Customers Per Total Actual	Actual	Per Customer	Total				
2014	7	31,735,774	31,735,774	31,735,774				
2015	7	34,710,609	34,710,609	34,710,609				
2016	7	40,074,176	40,074,176	40,074,176				
2017	7	36,485,139	36,485,139	36,485,139				
2018	7	40,205,243	40,205,243	40,205,243				
2019	7	62,525,354	62,525,354	62,525,354				
2020	7	59,599,950	59,599,950	59,599,950				
2021	7	60,410,748	60,410,748	60,410,748				
2022	7	62,040,423	62,040,423	62,040,423				
2023	7	65,345,852	65,345,852	65,345,852				
2024	1				65,345,852	65,345,852		
2025	1				65,345,852	65,345,852		
2026	1				65,345,852	65,345,852		
2027	1				65,345,852	65,345,852		
2028	1	_			65,345,852	65,345,852		

Figure 14. Actual vs Normalized R6

The R6 class has one customer and is expected to persist with one customer through 2028.

7. WEATHER SENSITIVITY

This section provides alternate low forecasts for scenarios with mild winters and high forecasts for cold winters. The low forecast uses the warmest winter in the past 10 years, which was 3,327 HDD (at 18°C) in 2023. The high forecast uses the coldest winter in the past 10 years, 4,306 HDD in 2014. The derived 18°C HDD forecast temperatures from 2024 to 2028 are provided with the normal forecast for reference. Forecast and actual HDDs from 2014 to 2023 are provided in Table 13.

Table 32. Low HDD Forecast

Low Forecast	HDD	3,327.2	3,327.2	3,327.2	3,327.2	3,327.2
	2023 Actual	2024 Forecast	2025 Forecast	2026 Forecast	2027 Forecast	2028 Forecast
R1 Residential	17,466,767	18,016,051	18,397,611	18,782,792	19,171,595	19,564,019
R1 Industrial	3,013,707	2,408,443	2,515,833	2,626,270	2,739,830	2,856,588
R1 Commercial	5,823,050	5,666,677	5,742,852	5,819,497	5,896,612	5,974,197
R2 Seasonal	869,131	832,281	832,281	832,281	832,281	832,281
R3	1,335,618	2,700,077	3,878,023	3,856,390	3,836,813	3,818,972
R4	2,227,329	2,023,938	2,334,616	2,408,833	2,485,410	2,564,421
R5	980,160	647,586	647,586	647,586	647,586	647,586
R6	65,345,852	65,345,852	65,345,852	65,345,852	65,345,852	65,345,852
Total	97,061,614	97,640,905	99,694,653	100,319,501	100,955,979	101,603,916

Table 33. Normal HDD Forecast

Normal Forecast	HDD	3,754.1	3,747.4	3,740.8	3,734.1	3,727.5
	2023 Actual	2024 Forecast	2025 Forecast	2026 Forecast	2027 Forecast	2028 Forecast
R1 Residential	17,466,767	19,394,143	19,778,416	20,165,775	20,556,215	20,949,733
R1 Industrial	3,013,707	2,579,897	2,686,373	2,795,837	2,908,361	3,024,023
R1 Commercial	5,823,050	6,119,454	6,193,869	6,268,637	6,343,760	6,419,235
R2 Seasonal	869,131	832,281	832,281	832,281	832,281	832,281
R3	1,335,618	2,740,988	3,918,036	3,895,600	3,875,300	3,856,801
R4	2,227,329	2,023,938	2,334,616	2,408,833	2,485,410	2,564,421
R5	980,160	647,586	647,586	647,586	647,586	647,586
R6	65,345,852	65,345,852	65,345,852	65,345,852	65,345,852	65,345,852
Total	97,061,614	99,684,138	101,737,027	102,360,400	102,994,765	103,639,931

Table 34. High HDD Forecast

High Forecast	HDD	4,306.0	4,306.0	4,306.0	4,306.0	4,306.0
	2023 Actual	2024 Forecast	2025 Forecast	2026 Forecast	2027 Forecast	2028 Forecast
R1 Residential	17,466,767	21,143,218	21,567,872	21,996,147	22,428,043	22,863,562
R1 Industrial	3,013,707	2,879,826	2,995,562	3,114,494	3,236,698	3,362,254
R1 Commercial	5,823,050	6,700,310	6,785,323	6,870,806	6,956,759	7,043,182
R2 Seasonal	869,131	832,281	832,281	832,281	832,281	832,281
R3	1,335,618	2,796,600	3,971,969	3,948,022	3,926,352	3,906,603
R4	2,227,329	2,023,938	2,334,616	2,408,833	2,485,410	2,564,421
R5	980,160	647,586	647,586	647,586	647,586	647,586
R6	65,345,852	65,345,852	65,345,852	65,345,852	65,345,852	65,345,852
Total	97,061,614	102,369,610	104,481,060	105,164,021	105,858,981	106,565,740

The graph below displays total forecast consumption for the three scenarios. The majority of consumption is not weather-sensitive so the range does not vary considerably on a total consumption basis.

Total

Total

Total

100,000,000

100,000,000

90,000,000

70,000,000

50,000,000

40,000,000

40,000,000

Low Forecast

High Forecast

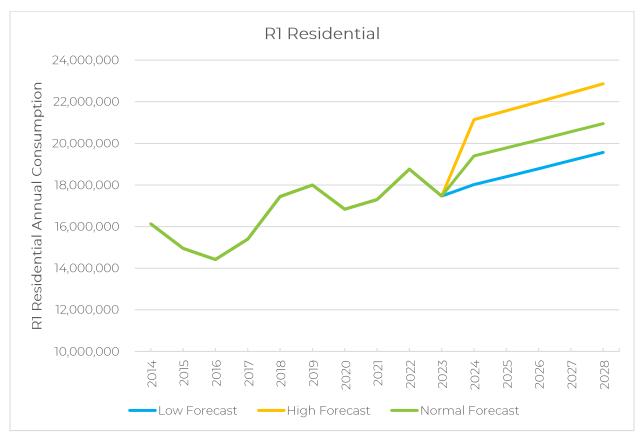

Normal Forecast

Figure 15. Weather Sensitivity – Total Consumption

Consumption forecasts for only largest weather-sensitive class, R1 Residential, are displayed in the following graph. Note the y-intercept is non-zero in each graph.

Figure 16. Weather Sensitivity – R1 Residential

